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Abstract

We consider the existence of positive solutions and multiple positive

solutions for the third order nonlinear differential equation subject to

the general two-point boundary conditions using different fixed point

theorems.

1 Introduction

In this paper we consider the existence of positive solutions to the third
order nonlinear differential equation,

y′′′(t) + f(t, y(t)) = 0, t ∈ [a, b], (1)

subject to the general two-point boundary conditions

α11y(a) − α12y(b) = 0

α21y
′(a) − α22y

′(b) = 0

−α31y
′′(a) + α32y

′′(b) = 0

(2)

where the coefficients α11, α12, α21, α22, α31, α32 are positive real constants.
The BVPs of this form arise in the modeling of nonlinear diffusions gener-
ated by nonlinear sources, in thermal ignition of gases, and in concentration
in chemical or biological problems. In these applied settings, only positive
solutions are meaningful.

There is much current attention focussed on existence of positive solutions
to the boundary value problems for ordinary differential equations, as well as
for the finite difference equations; see [5, 6, 8, 9] to name a few. The book by
Agarwal, Wong and O’Regan [1] gives a good overview for much of the work
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which has been done and the methods used. Shuhong and Li [22] obtained
the existence of single and multiple positive solutions to the nonlinear singular
third-order two-point boundary value problem

y′′′(t)+λa(t)f(y(t)) = 0, 0 < t < 1

y(0) =y′(0) = y′′(1) = 0

by using Krasnosel’skii fixed point theorem [16]. In [23], Sun and Wen consid-
ered the existence of multiple positive solutions to third order equation,

y′′′(t) = a(t)f(y(t)), 0 < t < 1

under the boundary conditions

αy′(0) − βy′′(0) = 0, y(1) = y′(1) = 0.

We extend these results to general two-point boundary value problems in the
interval [a, b], where b > a ≥ 0. We use the following notation for simplicity,
γi = αi1 − αi2, i = 1, 2, 3 and βi = aαi1 − bαi2, i = 1, 2.
We assume that throughout the paper:

(A1) f : [a, b] × R
+ → R

+ is continuous, where R
+ is the set of nonnegative

real numbers.

(A2) γi > 0, i = 1, 2, 3

(A3) β2

γ2
− α22γ3

α32γ2
(b − a) ≤ a and β2

γ2
+ α21γ3

α31γ2
(b − a) ≤ a

(A4) −α11

2γ1
+ α21

γ2
− α31

2γ3
< 0,−α12

2γ1
+ α22

γ2
− α32

2γ3
< 0.

We define the nonnegative extended real numbers f0, f 0, f∞ and f∞ by

f0 = lim
y→0+

min
t∈[a,b]

f(t, y)

y
, f 0 = lim

y→0+
max
t∈[a,b]

f(t, y)

y
,

f∞ = lim
y→∞

min
t∈[a,b]

f(t, y)

y
, and f∞ = lim

y→∞

max
t∈[a,b]

f(t, y)

y

and assume that they will exist. We note that f 0 = 0 and f∞ = ∞ correspond
to the superlinear case, and f0 = ∞ and f∞ = 0 correspond to the sublinear
case. By the positive solution of (1)-(2) we mean that y(t) is positive on [a, b]
and satisfies the differential equation (1) and the boundary conditions (2).

This paper is organized as follows. In Section 2, as a fundamental impor-
tance, we estimate the bounds for Green’s function corresponding to the BVP
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(1)-(2). In Section 3, we present a lemma which is needed in our main result
and establish a criterion for the existence of at least one positive solution for
the BVP (1)-(2) by using Krasnosel’skii fixed point theorem [16]. In Section 4,
some existence criteria for at least three positive solutions to the BVP (1)-(2)
are established by using the well-known Leggett-Williams fixed point theorem
[18]. And then, for arbitrary positive integer m, existence results for at least
2m− 1 positive solutions are obtained. Finally as an application, we give two
examples to demonstrate our results.

2 Green’s Function and bounds

In this section, we estimate the bounds of the Green’s function for the
homogeneous two-point BVP corresponding to (1)- (2).

The Green’s function for the homogeneous problem −y′′′ = 0, satisfying
the boundary conditions (2) can be constructed after computation and is given
by

G(t, s) =











−α12γ2γ3(b−s)2−2α22γ3(−β1+tγ1)(b−s)−α32(A−2tγ1β2+t2γ1γ2)
2γ1γ2γ3

a ≤ t ≤ s ≤ b

−α11γ2γ3(s−a)2+2α21γ3(−β1+tγ1)(s−a)−α31(A−2tγ1β2+t2γ1γ2)
2γ1γ2γ3

a ≤ s ≤ t ≤ b.

(3)
where A = 2β1β2 −γ2(a

2α11 − b2α12). We now state two Lemmas to minimum
and maximum values of Green’s function.

Lemma 2.1 For t < s, G(t, s) attains minimum value at

t =
α2

22γ3β1 − α12α32γ2β2

α2
22γ1γ3 − α12α32γ

2
2

s =
−α22α32γ1β2 + bα2

22γ1γ3 + α22α32γ2β1 − bα12α32γ
2
2

α2
22γ1γ3 − α12α32γ

2
2

.

And also, for s < t, G(t, s) attains minimum value at

t =
α11α31γ2β2 − α2

21γ3β1

α11α31γ
2
2 − α2

21γ1γ3

s =
α21α31γ1β2 − aα2

21γ1γ3 − α21α31γ2β1 + aα11α31γ
2
2

α11α31γ
2
2 − α2

21γ1γ3
.

Lemma 2.2 Assume that the condition (A4) holds, then G(s, s) has a maxi-
mum value at

s =
bα12γ2γ3 − bα22γ1γ3 − α22γ3β1 + α32γ1β2

α12γ2γ3 − 2α22γ1γ3 + α32γ1γ2
.
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The above two Lemmas can be proved easily by considering minimum and
maximum of function of two variables.

Theorem 2.3 Let G(t, s) be the Green’s function for the homogeneous BVP
corresponding to (1)-(2), then

γG(s, s) ≤ G(t, s) ≤ G(s, s), for all (t, s) ∈ [a, b] × [a, b] (4)

where 0 < γ = min{m1, m2} ≤ 1.

Proof: The Green’s function G(t, s) for the homogeneous problem of the BVP
(1)-(2) is given in (3). Clearly

G(t, s) > 0 on [a, b] × [a, b]. (5)

First we establish the right side inequality by assuming the conditions given
by (A2)-(A3). For t < s,

G(t, s) ≤ −
α12

2γ1
(b − s)2 −

α22

γ2

(

−β1

γ1
+ s

)

(b − s) −
α32

2γ3

(

A

γ1γ2
− 2s

β2

γ2
+ s2

)

= G(s, s)

and for s < t,

G(t, s) ≤ −
α11

2γ1

(s − a)2 +
α21

γ2

(

−β1

γ1

+ s

)

(s − a) −
α31

2γ3

(

A

γ1γ2

− 2s
β2

γ2

+ s2

)

= G(s, s).

Hence,
G(t, s) ≤ G(s, s).

By assuming the conditions given by (A2)-(A4), we establish the other in-
equality.
For t < s, from Lemma 2.1 and Lemma 2.2, we have

G(t, s)

G(s, s)
≥

min G(t, s)

max G(s, s)
= m1

and for s < t, we have

G(t, s)

G(s, s)
≥

min G(t, s)

max G(s, s)
= m2.

Therefore,

γG(s, s) ≤ G(t, s), for all (t, s) ∈ [a, b] × [a, b],

where 0 < γ = min{m1, m2} ≤ 1. 2
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3 Existence of Positive Solutions

In this section, first we prove a lemma which is needed in our main result
and establish criteria for the existence of at least one positive solution of the
BVP (1)-(2).

Let y(t) be the solution of the BVP (1)-(2), and be given by

y(t) =

∫ b

a

G(t, s)f(s, y(s))ds, for all t ∈ [a, b]. (6)

Define
X =

{

y | y ∈ C[a, b]
}

,

with norm
‖ y ‖= max

t∈[a,b]
| y(t) | .

Then (X, ‖ . ‖) is a Banach space. Define a set κ by

κ =

{

u ∈ X : u(t) ≥ 0 on [a, b] and min
t∈[a,b]

u(t) ≥ γ ‖ u ‖

}

, (7)

then it is easy to see that κ is a positive cone in X.
Define the operator T : κ → X by

(Ty)(t) =

∫ b

a

G(t, s)f(s, y(s))ds, for all t ∈ [a, b]. (8)

If y ∈ κ is a fixed point of T , then y satisfies (6) and hence y is a positive
solution of the BVP (1)-(2). We seek the fixed points of the operator T in the
cone κ.

Lemma 3.1 The operator T defined by (8) is a self map on κ.

Proof: If y ∈ κ, then by (4)

(Ty)(t) =

∫ b

a

G(t, s)f(s, y(s))ds

≤

∫ b

a

G(s, s)f(s, y(s))ds,

then

‖ Ty ‖≤

∫ b

a

G(s, s)f(s, y(s))ds, t ∈ [a, b].
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Moreover, if y ∈ κ,

(Ty)(t) =

∫ b

a

G(t, s)f(s, y(s))ds

≥

∫ b

a

γG(s, s)f(s, y(s))ds

≥ γ

∫ b

a

max
t∈[a,b]

G(t, s)f(s, y(s))ds

≥ γ max
t∈[a,b]

∫ b

a

G(t, s)f(s, y(s))ds

= γ ‖ Ty ‖ .

Therefore,
min
t∈[a,b]

(Ty)(t) ≥ γ ‖ Ty ‖ .

Also, from the positivity of G(t, s), it clear that for y ∈ κ, that (Ty)(t) ≥
0, a ≤ t ≤ b, and so Ty ∈ κ; thus T : κ → κ. Further arguments yields that
T is completely continuous. 2 The

existence of at least one positive solution of (1)-(2) is based on an application
of the following fixed point theorem [16].

Theorem 3.2 (Krasnosel’skii) Let X be a Banach space, K ⊆ X be a
cone, and suppose that Ω1, Ω2 are open subsets of X with 0 ∈ Ω1 and Ω1 ⊂ Ω2.
Suppose further that T : K ∩ (Ω2\Ω1) → K is completely continuous operator
such that either

(i) ‖ Tu ‖≤‖ u ‖, u ∈ K ∩ ∂Ω1 and ‖ Tu ‖≥‖ u ‖, u ∈ K ∩ ∂Ω2, or

(ii) ‖ Tu ‖≥‖ u ‖, u ∈ K ∩ ∂Ω1 and ‖ Tu ‖≤‖ u ‖, u ∈ K ∩ ∂Ω2

holds. Then T has a fixed point in K ∩ (Ω2\Ω1).

Theorem 3.3 Assume that conditions (A1) − (A4) are satisfied. If f 0 = 0
and f∞ = ∞, then the BVP (1)-(2) has at least one positive solution that lies
in κ.

Proof: Let T be the cone preserving, completely continuous operator defined
as in (8). Since f 0 = 0, we may choose H1 > 0 so that

max
t∈[a,b]

f(t, y)

y
≤ η1, for 0 < y ≤ H1,
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where η1 > 0 satisfies

η1

∫ b

a

G(s, s)ds ≤ 1.

Thus, if y ∈ κ and ‖ y ‖= H1, then we have

(Ty)(t) =

∫ b

a

G(t, s)f(s, y(s))ds

≤

∫ b

a

G(s, s)f(s, y(s))ds

≤

∫ b

a

G(s, s)η1y(s)ds

≤ η1

∫ b

a

G(s, s) ‖ y ‖ ds

≤‖ y ‖ .

Therefore,
‖ Ty ‖≤‖ y ‖ .

Now if we let
Ω1 = {y ∈ X :‖ y ‖< H1},

then
‖ Ty ‖≤‖ y ‖, for y ∈ κ ∩ ∂Ω1. (9)

Further, since f∞ = ∞, there exists H2 > 0 such that

min
t∈[a,b]

f(t, y)

y
≥ η2, for y ≥ H2,

where η2 > 0 is chosen so that

η2γ
2

∫ b

a

G(s, s)ds ≥ 1.

Let

H2 = max

{

2H1,
1

γ
H2

}

,

and
Ω2 = {y ∈ X :‖ y ‖< H2},

then y ∈ κ and ‖ y ‖= H2 implies

min
t∈[a,b]

y(t) ≥ γ ‖ y ‖≥ H2,
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and so

(Ty)(t) =

∫ b

a

G(t, s)f(s, y(s))ds

≥

∫ b

a

γG(s, s)f(s, y(s))ds

≥ γ

∫ b

a

G(s, s)η2y(s)ds

≥ γ2η2

∫ b

a

G(s, s) ‖ y ‖ ds

≥‖ y ‖ .

Hence,
‖ Ty ‖≥‖ y ‖, for y ∈ κ ∩ ∂Ω2. (10)

Therefore, by part (i) of the Theorem 3.2 applied to (9) and (10), T has a
fixed point y(t) ∈ κ ∩ (Ω2\Ω1) such that H1 ≤‖ y ‖≤ H2. This fixed point is
a positive solution of the BVP (1)-(2). 2

Theorem 3.4 Assume that conditions (A1) − (A4) are satisfied. If f0 = ∞
and f∞ = 0, then the BVP (1)-(2) has at least one positive solution that lies
in κ.

Proof: Let T be the cone preserving, completely continuous operator defined
as in (8). Since f0 = ∞, we choose J1 > 0 such that

min
t∈[a,b]

f(t, y)

y
≥ η1, for 0 < y ≤ J1,

where η1γ
2
∫ b

a
G(s, s)ds ≥ 1. Then for y ∈ κ and ‖ y ‖= J1, we have

(Ty)(t) =

∫ b

a

G(t, s)f(s, y(s))ds

≥

∫ b

a

γG(s, s)f(s, y(s))ds

≥ γ

∫ b

a

G(s, s)η1y(s)ds

≥ γ2η1

∫ b

a

G(s, s) ‖ y ‖ ds

≥‖ y ‖ .
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Thus, we may let

Ω1 = {y ∈ X :‖ y ‖< J1},

so that

‖ Ty ‖≥‖ y ‖, for y ∈ κ ∩ ∂Ω1. (11)

Now, since f∞ = 0, there exists J2 > 0 so that

max
t∈[a,b]

f(t, y)

y
≤ η2, for y ≥ J2,

where η2 > 0 satisfies

η2

∫ b

a

G(s, s)ds ≤ 1.

It follows that

f(t, y) ≤ η2y, for y ≥ J2.

We consider two cases:
Case(i) f is bounded. Suppose L > 0 is such that f(t, y) ≤ L, for all
0 < y < ∞. In this case, we may choose

J2 = max

{

2J1, L

∫ b

a

G(s, s)ds

}

,

so that y ∈ κ with ‖ y ‖= J2, we have

(Ty)(t) =

∫ b

a

G(t, s)f(s, y(s))ds

≤

∫ b

a

G(s, s)f(s, y(s))ds

≤ L

∫ b

a

G(s, s)ds

≤ J2 =‖ y ‖,

and therefore

‖ Ty ‖≤‖ y ‖ .

Case(ii) f is unbounded. Choose J2 > max{2J1, J2} be such that f(t, y) ≤
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f(t, J2), for 0 < y ≤ J2. Then for y ∈ κ and ‖ y ‖= J2, we have

(Ty)(t) =

∫ b

a

G(t, s)f(s, y(s))ds

≤

∫ b

a

G(s, s)f(s, y(s))ds

≤

∫ b

a

G(s, s)f(s, J2)ds

≤

∫ b

a

G(s, s)η2J2ds

≤ η2

∫ b

a

G(s, s)J2ds

≤ J2 =‖ y ‖ .

Therefore, in either case we put

Ω2 = {y ∈ X :‖ y ‖< J2},

we have
‖ Ty ‖≤‖ y ‖, for y ∈ κ ∩ ∂Ω2. (12)

Therefore, by the part (ii) of Theorem 3.2 applied to (11) and (12), T has a
fixed point y(t) ∈ κ ∩ (Ω2\Ω1) such that J1 ≤‖ y ‖≤ J2. This fixed point is a
positive solution of the BVP (1)-(2). 2

4 Existence of Multiple Positive Solutions

In this section, we establish the existence of at least three positive solutions
to the BVP (1)-(2). And then, for an arbitrary positive integer m, existence
of at least 2m − 1 positive solutions are obtained.

Let E be a real Banach space with cone P . A map S : P → [0,∞) is said
to be a nonnegative continuous concave functional on P , if S is continuous
and

S(λx + (1 − λ)y) ≥ λS(x) + (1 − λ)S(y),

for all x, y ∈ P and λ ∈ [0, 1]. Let α and β be two real numbers such that
0 < α < β and S be a nonnegative continuous concave functional on P . We
define the following convex sets

Pα = {y ∈ P :‖ y ‖< α},
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and
P (S, α, β) = {y ∈ P : α ≤ S(y), ‖ y ‖≤ β}.

We now state the famous Leggett-Williams fixed point theorem [18].

Theorem 4.1 Let T : Pa3
→ Pa3

be completely continuous and S be a non-
negative continuous concave functional on P such that S(y) ≤‖ y ‖ for all
y ∈ Pa3

. Suppose that there exist 0 < d < a1 < a2 ≤ a3 such that the following
conditions hold.

(i) {y ∈ P (S, a1, a2) : S(y) > a1} 6= ∅ and S(Ty) > a1 for all
y ∈ P (S, a1, a2);

(ii) ‖ Ty ‖< d for all y ∈ Pd;

(iii) S(Ty) > a1 for y ∈ P (S, a1, a3) with ‖ Ty ‖> a2.

Then, T has at least three fixed points y1, y2, y3 in Pa3
satisfying

‖ y1 ‖< d, a1 < S(y2), ‖ y3 ‖> d, S(y3) < a1.

For convenience, we let

D = max
t∈[a,b]

∫ b

a

G(t, s)ds; C = min
t∈[a,b]

∫ b

a

G(t, s)ds.

Theorem 4.2 Assume that the conditions (A1) − (A4) are satisfied and also
there exist real numbers d0, d1 and c with 0 < d0 < d1 < d1

γ
< c such that

f(t, y(t)) <
d0

D
, for y ∈ [0, d0], (13)

f(t, y(t)) >
d1

C
, for y ∈ [d1,

d1

γ
], (14)

f(t, y(t)) <
c

D
, for y ∈ [0, c]. (15)

Then the BVP (1)-(2) has at least three positive solutions.

Proof: Let the Banach space E = C[a, b] be equipped with the norm

‖ y ‖= max
t∈[a,b]

| y(t) | .

We denote
P = {y ∈ E : y(t) ≥ 0, t ∈ [a, b]} .
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Then, it is obvious that P is a cone in E. For y ∈ P , we define

S(y) = min
t∈[a,b]

| y(t) |,

and

(Ty)(t) =

∫ b

a

G(t, s)f(s, y(s))ds, t ∈ [a, b].

It is easy to check that S is a nonnegative continuous concave functional on
P with S(y) ≤‖ y ‖ forall y ∈ P . Further the operator T : P → P is a
completely continuous by an application of the Ascoli-Arzela theorem [12] and
the fixed points of T are the solutions of the BVP (1)-(2).

First, we prove that if there exists a positive number r such that
f(t, y(t)) < r

D
for y ∈ [0, r], then T : Pr → Pr. Indeed, if y ∈ Pr, then for

t ∈ [a, b],

(Ty)(t) =

∫ b

a

G(t, s)f(s, y(s))ds

<
r

D

∫ b

a

G(t, s)ds

≤
r

D
max
t∈[a,b]

∫ b

a

G(t, s)ds = r.

Thus, ‖ Ty ‖< r, that is, Ty ∈ Pr. Hence, we have shown that if (13) and
(15) hold, then T maps Pd0

into Pd0
and Pc into Pc.

Next, we show that {y ∈ P (S, d1,
d1

γ
) : S(y) > d1} 6= ∅ and S(Ty) > d1 for

all y ∈ P (S, d1,
d1

γ
). In fact, the constant function

d1 + d1

γ

2
∈

{

y ∈ P (S, d1,
d1

γ
) : S(y) > d1

}

,

hence it is nonempty. Moreover, for y ∈ P (S, d1,
d1

γ
), we have

d1

γ
≥‖ y ‖≥ y(t) ≥ min

t∈[a,b]
y(t) = S(y) ≥ d1,

for all t ∈ [a, b]. Thus, in view of (14) we see that

S(Ty) = min
t∈[a,b]

∫ b

a

G(t, s)f(s, y(s))ds

>
d1

C
min
t∈[a,b]

∫ b

a

G(t, s)ds

= d1,
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as required.

Finally, we show that if y ∈ P (S, d1, c) with ‖ Ty ‖> d1

γ
, then S(Ty) > d1.

To see this, we suppose that y ∈ P (S, d1, c) and ‖ Ty ‖> d1

γ
, then, by Theorem

2.3, we have

S(Ty) = min
t∈[a,b]

∫ b

a

G(t, s)f(s, y(s))ds

≥ γ

∫ b

a

G(s, s)f(s, y(s))ds

≥ γ

∫ b

a

G(t, s)f(s, y(s))ds,

for all t ∈ [a, b]. Thus

S(Ty) ≥ γ max
t∈[a,b]

∫ b

a

G(t, s)f(s, y(s))ds

= γ ‖ Ty ‖

> γ
d1

γ

= d1.

Hence the hypotheses of the Leggett Williams theorem 4.1 are satisfied, and
therefore T has at least three fixed points, that is, the BVP (1)-(2) has at least
three positive solutions u, v and w such that

‖ u ‖< d0, d1 < min
t∈[a,b]

v(t), ‖ w ‖> d0, min
t∈[a,b]

w(t) < d1.

2

Theorem 4.3 Let m be an arbitrary positive integer. Assume that there exist
numbers di(1 ≤ i ≤ m) and aj(1 ≤ j ≤ m − 1) with 0 < d1 < a1 < a1

γ
< d2 <

a2 < a2

γ
< ... < dm−1 < am−1 <

am−1

γ
< dm such that

f(t, y(t)) <
di

D
, y ∈ [0, di], 1 ≤ i ≤ m (16)

f(t, y(t)) >
aj

C
, y ∈ [aj ,

aj

γ
], 1 ≤ j ≤ m − 1 (17)

Then, the BVP (1)-(2) has at least 2m − 1 positive solutions in Pdm
.
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Proof: We use induction on m. First, for m = 1, we know from (16) that
T : Pd1

→ Pd1
, then, it follows from Schauder fixed point theorem that the

BVP (1)-(2) has at least one positive solution in Pd1
.

Next, we assume that this conclusion holds for m = k. In order to prove
that this conclusion holds for m = k + 1, we suppose that there exist numbers
di(1 ≤ i ≤ k + 1) and aj(1 ≤ j ≤ k) with 0 < d1 < a1 < a1

γ
< d2 < a2 < a2

γ
<

... < dk < ak < ak

γ
< dk+1 such that

f(t, y(t)) <
di

D
, y ∈ [0, di], 1 ≤ i ≤ k + 1, (18)

f(t, y(t)) >
aj

C
, y ∈ [aj ,

aj

γ
], 1 ≤ j ≤ k (19)

By assumption, the BVP (1)-(2) has at least 2k − 1 positive solutions yi(i =
1, 2, ..., 2k − 1) in Pdk

. At the same time, it follows from Theorem 4.2, (18)
and (19) that the BVP (1)-(2) has at least three positive solutions u, v and w

in Pdk+1
such that

‖ u ‖< dk, ak < min
t∈[a,b]

v(t), ‖ w ‖> dk, min
t∈[a,b]

w(t) < ak.

Obviously, v and w are different from yi(i = 1, 2, ..., 2k − 1). Therefore, the
BVP(1)-(2) has at least 2k + 1 positive solutions in Pdk+1

, which shows that
this conclusion also holds for m = k + 1. 2

5 Examples

Now, we give some examples to illustrate the main results.

Example 1

Consider the following boundary value problem

y′′′ + y2(1 + 9e−8y) = 0

6y(0)−
11

2
y(1) = 0

3y′(0) − 2y′(1) = 0

−y′′(0) + 3y′′(1) = 0.

(20)

It is easy to see that all the conditions of Theorem 3.3 hold. It follows from
Theorem 3.3, the BVP (20) has at least one positive solution.
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Example 2

Consider the following boundary value problem

y′′′ +
100(y + 1)

16(y2 + 1)
= 0

5y(0) −
9

2
y(1) = 0

3y′(0) − 2y′(1) = 0

−y′′(0) + 2y′′(1) = 0.

(21)

A simple calculation shows that γ = 0.1757. If we choose d0 = 1
2
, d1 = 19,

then the conditions (13)-(15) are satisfied. Therefore, it follows from Theorem
4.2 that the BVP (21) has at least three positive solutions.

References

[1] R. P. Agarwal, D. O’Regan, and P. J. Y. Wong, ”Positive Solutions of
Differential, Difference and Integral Equations”, Kluwer Academic Pub-
lishers, Dordrecht, The Netherlands, 1999.

[2] R. I. Avery, A generalization of the Leggett-Williams fixed point theorem,
Math. Sci. Res. Hot-Line. 3 (1999), 9-14.

[3] D. R. Anderson and J. M. Davis, Mulitple solutions and eigenvalues for
third-order right focal boundary value problems, J. Math. Anal. Appl.
267 (2002), 135-157.

[4] J. M. Davis, J. Henderson, K. R. Prasad and W. Yin, Eigenvalue intervals
for nonlinear right focal problems, Appl. Anal. 74 (2000), 215-231.

[5] P. W. Eloe and J. Henderson, Positive solutions for (n-1, 1) conjugate
boundary value problems, Nonlinear. Anal. 28 (1997), 1669-1680.

[6] P. W. Eloe and J. Henderson, Positive solutions and nonlinear (k, n-k)
conjugate eigenvalue problems, Diff. Eqns. dyn. Sys. 6 (1998), 309-317.

[7] P. W. Eloe and J. Henderson, Positive solutions and nonlinear multipoint
conjugate eigenvalue problems, Elec. J. Diff. Eqns. 1997 (1997), no. 3,
1-11.

[8] L. H. Erbe, S. Hu and H. Wang, Multiple positive solutions of some
boundary value problems, J. Math. Anal. Appl. 184 (1994), 640-648.

EJQTDE, 2009, No. 9, p. 15



[9] L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary
differential equations, Proc. Amer. Math. Soc. 120 (1994), 743-748.

[10] Y. Feng and S. Liu, Solvability of a third-order two-point boundary value
problem, Appl. Math. Lett. 18 (2005), 1034-1040.

[11] D. G. de Figueiredo, P. L. Lions, and R. D. Nussbaum, A priori esti-
mates and existence of positive solutions of semilinear elliptic equations,
J. Math.Pures Appl. 61 (1982), 41-63.

[12] P. Hartman, Ordinary Differential Equations, John Wiley and Sons, 1964.

[13] J. Henderson and E. R. Kaufmann, Multiple positive solutions for focal
boundary value problems, Comm. Appl. Anal. 1 (1997), 53-60.

[14] J. Henderson and H. Wang, Positive solutions for nonlinear eigenvalue, J.
Math. Anal. Appl. 208 (1997), 252-259.

[15] E. R. Kaufmann, Multiple positive solutions for higher order boundary
value problems, Rocky Mtn. J. Math. 28 (1998), no.3, 1017-1028.

[16] M. A. Krasnosel’skii, ”Positive solutions of operator equations”, P. No-
ordhoff Ltd, Groningen, The Netherlands (1964).

[17] H. J. Kuiper, On positive solutions of nonlinear elliptic eigenvalue prob-
lems, Rend. Circ. Mat. Palermo. 20 (1971), 113-138.

[18] R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlin-
ear operators on ordered Banach spaces, Indiana University Mathematics
Journal. 28 (1979), 673-688.

[19] W. C. Lian, F. H. Wong and C. C. Yeh, On the existence of positive
solutions of nonlinear second order differential equations, Proc. Amer.
Math. Soc. 124 (1996), 1117-1126.

[20] K. R. Prasad, A. Kameswara Rao and P. Murali, Eigenvalue intervals for
two-point general third order differential equation, Bull. Inst. Academia
Sinica (accepted).

[21] L. Sanchez, Positive solutions for a class of semilinear two-point boundary
value problems, Bull. Austral. Math. Soc. 45 (1992), 439-451.

[22] Shuhong and Li, Positive solutions of nonlinear singular third-order two-
point boundary value problem, J. Math. Anal. Appl. 323 (2006), no 1,
413-425.

EJQTDE, 2009, No. 9, p. 16



[23] H. R. Sun and W. K. Wen, On the number of positive solutions for a
nonlinear third order boundary value problem, Int. J. Diffrence Equns. 1
(2006), no 1, 165-176.

(Received November 14, 2008)

EJQTDE, 2009, No. 9, p. 17


